

2016 IEEE 13th International Conference on Solid-State and Integrated Circuit Technology

Oct. 25- Oct.28, 2016 White Horse Lake Jianguo Hotel, Hangzhou, China S47-2 Signal Processing

10:45-11:00 Oct.28, 2016(Fri)

JAPAN

High-Frequency Low-Distortion One-Tone and Two-Tone Signal Generation Using Arbitrary Waveform Generator

*Tomonori Yanagida, Shohei Shibuya Haruo Kobayashi, Kazumi Hatayama

Gunma University

Research Objective

Arbitrary Waveform Generator

- Research background
- Phase switching algorithm
- Proposed solutions and simulations
 - High-frequency signal
 - 3rd and 5th harmonics cancellation
 - Two-tone signals
- Conclusion

- Research background
- Phase switching algorithm
- Proposed solutions and simulations
 - High-frequency signal
 - 3rd and 5th harmonics cancellation
 - Two-tone signals
- Conclusion

Research Background

ADC Test Cost Using AWG

AWG : Arbitrary Waveform Generator

Expensive

Expensive AWG		Cost	Quality
	Expensive AWG	×	0
Low-priced AWG + + W	Low-priced AWG	0	×
	Low-priced AWG + Proposed method	0	0

Ideal and Real

2017/3/21

Arbitrary Waveform Generator

- Research background
- Phase switching algorithm
- Proposed solutions and simulations
 - High-frequency signal
 - 3rd and 5th harmonics cancellation
 - Two-tone signals
- Conclusion

Our Preceding Study

Low-frequency Signal Generation with Phase Switching

- Research background
- Phase switching algorithm
- Proposed solutions and simulations
 - High-frequency signal
 - 3rd and 5th harmonics cancellation
 - Two-tone signals
- Conclusion

- Research background
- Phase switching algorithm
- Proposed solutions and simulations
 - High-frequency signal
 - 3rd and 5th harmonics cancellation
 - Two-tone signals
- Conclusion

High-frequency Input Case

High-frequency signal = near the Nyquist frequency

High-frequency Input Case

15/26

High-frequency signal = near the Nyquist frequency

Algorithm for High-Frequency Signal ^{16/26}

 $D_{in} = \begin{cases} X_0 = A \sin(2\pi f_{in}nT_s + \varphi_0) & n: \text{ even} \\ X_1 = A \sin(2\pi f_{in}nT_s - \varphi_1) & n: \text{ odd} \end{cases}$

Conventional High-Frequency Signal^{17/26}


```
D_{in} = A\sin(2\pi f_{in}nT_s)
```


Proposed Signal

- Research background
- Phase switching algorithm
- Proposed solutions and simulations
 - High-frequency signal
 - 3rd and 5th harmonics cancellation
 - Two-tone signals
- Conclusion

3rd and 5th Harmonics Cancellation At Once

4 phase interleave

$$D_{in} = \begin{cases} X_0 = A \sin(2\pi f_{in} nT_s - \varphi_a - \varphi_b) & n = 4k \\ X_1 = A \sin(2\pi f_{in} nT_s - \varphi_a + \varphi_b) & n = 4k + 1 \\ X_2 = A \sin(2\pi f_{in} nT_s + \varphi_a - \varphi_b) & n = 4k + 2 \\ X_3 = A \sin(2\pi f_{in} nT_s + \varphi_a + \varphi_b) & n = 4k + 3 \end{cases}$$

 $\varphi_a = \frac{\pi}{2N_x}$ $\varphi_b = \frac{\pi}{N_y}$ Nth order image is cancelled

Signal with 3rd and 5th Harmonics

3rd and 5th Harmonics Cancellation

- Research background
- Phase switching algorithm
- Proposed solutions and simulations
 - High-frequency signal
 - 3rd and 5th harmonics cancellation
 - Two-tone signals
- Conclusion

Two-Tone Signal Case

The algorithm is NOT applicable

Algorithm For Two-Tone Signals

$$D_{in} = \begin{cases} X_0 = A \sin(2\pi f_1 n T_s + \varphi_0) + B \sin(2\pi f_2 n T_s - \varphi_0) & n: \text{ even} \\ X_1 = A \sin(2\pi f_1 n T_s - \varphi_0) + B \sin(2\pi f_2 n T_s + \varphi_0) & n: \text{ odd} \end{cases}$$

$$\varphi_0 = \frac{\pi}{N}$$
 Nth order IMD is cancelled

Two-Tone Signal and IMD3

IMD3 Cancellation

- Research background
- Phase switching algorithm
- Proposed solutions and simulations
 - High-frequency signal
 - 3rd and 5th harmonics cancellation
 - Two-tone signals
- Conclusion

Conclusion

- We have proposed high-frequency low-distortion signal generation algorithms with AWG.
- Single-tone and two-tone signal generation
- Need only for a simple analog HPF.
- No need for AWG nonlinearity identification.

Accurate measurement has been very important from thousands years ago

